

The inverse of $\mathbf{a}_{2 \times 2}$ matrix

Introduction

Once you know how to multiply matrices it is natural to ask whether they can be divided. The answer is no. However, by defining another matrix called the inverse matrix it is possible to work with an operation which plays a similar role to division. In this leaflet we explain what is meant by an inverse matrix and how the inverse of a 2×2 matrix is calculated.

1. The inverse of a 2×2 matrix

The inverse of a 2×2 matrix A, is another 2×2 matrix denoted by A^{-1} with the property that

$$
A A^{-1}=A^{-1} A=I
$$

where I is the 2×2 identity matrix $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$. That is, multiplying a matrix by its inverse produces an identity matrix. Note that in this context A^{-1} does not mean $\frac{1}{A}$.
Not all 2×2 matrices have an inverse matrix. If the determinant of the matrix is zero, then it will not have an inverse, and the matrix is said to be singular. Only non-singular matrices have inverses.

2. A simple formula for the inverse

In the case of a 2×2 matrix $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ a simple formula exists to find its inverse:

$$
\text { if } \quad A=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \quad \text { then } \quad A^{-1}=\frac{1}{a d-b c}\left(\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right)
$$

Example

Find the inverse of the matrix $A=\left(\begin{array}{ll}3 & 1 \\ 4 & 2\end{array}\right)$.

Solution

Using the formula

$$
\begin{aligned}
A^{-1} & =\frac{1}{(3)(2)-(1)(4)}\left(\begin{array}{cc}
2 & -1 \\
-4 & 3
\end{array}\right) \\
& =\frac{1}{2}\left(\begin{array}{cc}
2 & -1 \\
-4 & 3
\end{array}\right)
\end{aligned}
$$

This could be written as

$$
\left(\begin{array}{cc}
1 & -\frac{1}{2} \\
-2 & \frac{3}{2}
\end{array}\right)
$$

You should check that this answer is correct by performing the matrix multiplication $A A^{-1}$.
The result should be the identity matrix $I=\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)$.

Example

Find the inverse of the matrix $A=\left(\begin{array}{cc}2 & 4 \\ -3 & 1\end{array}\right)$.

Solution

Using the formula

$$
\begin{aligned}
A^{-1} & =\frac{1}{(2)(1)-(4)(-3)}\left(\begin{array}{cc}
1 & -4 \\
3 & 2
\end{array}\right) \\
& =\frac{1}{14}\left(\begin{array}{cc}
1 & -4 \\
3 & 2
\end{array}\right)
\end{aligned}
$$

This can be written

$$
A^{-1}=\left(\begin{array}{cc}
1 / 14 & -4 / 14 \\
3 / 14 & 2 / 14
\end{array}\right)=\left(\begin{array}{cc}
1 / 14 & -2 / 7 \\
3 / 14 & 1 / 7
\end{array}\right)
$$

although it is quite permissible to leave the factor $\frac{1}{14}$ at the front of the matrix.

Exercises

1. Find the inverse of $A=\left(\begin{array}{ll}1 & 5 \\ 3 & 2\end{array}\right)$.
2. Explain why the inverse of the matrix $\left(\begin{array}{ll}6 & 4 \\ 3 & 2\end{array}\right)$ cannot be calculated.
3. Show that $\left(\begin{array}{ll}3 & 4 \\ 2 & 3\end{array}\right)$ is the inverse of $\left(\begin{array}{cc}3 & -4 \\ -2 & 3\end{array}\right)$.

Answers

1. $A^{-1}=\frac{1}{-13}\left(\begin{array}{cc}2 & -5 \\ -3 & 1\end{array}\right)=\left(\begin{array}{cc}-\frac{2}{13} & \frac{5}{13} \\ \frac{3}{13} & -\frac{1}{13}\end{array}\right)$.
2. The determinant of the matrix is zero, that is, it is singular and so has no inverse.
